Math, asked by Svarn, 1 year ago

Sin3x/cosx + cos3x/sinx = 2cot2x prove the above

Answers

Answered by akshitanaidu09
7

Answer:

Step-by-step explanation:

Attachments:
Answered by mysticd
9

Answer:

\red { \frac{sin 3x}{cos x} + \frac{cos 3x}{sin x }}\green {= 2 cot 2x}

Step-by-step explanation:

 LHS = \frac{sin 3x}{cos x} + \frac{cos 3x}{sin x }\\= \frac{ sin 3x sin x + cos 3x cos x }{cos x sin x } \\= \frac{ cos 3x cos x + sin 3x sin x }{ sin x cos x }\\= \frac{ cos (3x - x)}{sin x cos x }

 \boxed { \pink { cos A cos B + sin A sin B = cos (A - B ) }}

 = \frac{ cos 2x}{sin x cos x }\\=  \frac{2 cos 2x}{2 sin x cos x }\\=  \frac{ 2cos 2x}{sin 2x }

 \boxed { \orange { 2sin x cos x = sin 2x }}

 = 2 cot 2x \\= RHS

Therefore.,

\red { \frac{sin 3x}{cos x} + \frac{cos 3x}{sin x }} \green {= 2 cot 2x}

•••♪

Similar questions