Math, asked by supromallick3, 11 months ago

sin3x/sin x. limx=0​

Answers

Answered by BrainlyPopularman
8

Question :

 \\ \displaystyle\sf \: \: solve : \lim_{x\:\rightarrow\:0} \left[ \frac { \sin(3x) } { \sin(x) } \right] \: \\

ANSWER :

 \\  \longrightarrow { \pink { \displaystyle\sf \: \:   \lim_{x\:\rightarrow\:0} \left[ \frac { \sin(3x) } { \sin(x) } \right] = 3 \:}} \\

EXPLANATION :

 \\ \displaystyle\sf \: \:  =  \lim_{x\:\rightarrow\:0} \left[ \frac { \sin(3x) } { \sin(x) } \right] \: \\

• We should write this as –

 \\ \displaystyle\sf \: \:  =  \lim_{x\:\rightarrow\:0} \left[ \frac { \sin(3x) } { 3x } \times (3x) \times  \dfrac{x}{ \sin(x) } \times   \dfrac{1}{x}   \right] \: \\

• We know that –

 \\ \displaystyle\sf   \implies { \red{ \boxed{ \lim_{x\:\rightarrow\:0} \left[ \frac { \sin(x) } { x }   \right]  = 1}}}\: \\

• So that –

 \\ \displaystyle\sf \: \:  =  \lim_{x\:\rightarrow\:0} \left[ 1 \times 3 \cancel x \times 1  \times    \dfrac{1}{ \cancel x}   \right] \: \\

 \\ \displaystyle\sf \: \:  =  3\\

Hence ,   \displaystyle\sf \: \:    \lim_{x\:\rightarrow\:0} \left[ \frac { \sin(3x) } { \sin(x) } \right] = 3 \: \\

 \\ \rule{220}{2} \\

IMPORTANT FORMULA :–

 \\ \displaystyle\sf \: \: (1) \:  \:  \lim_{x\:\rightarrow\:0} \left[  \frac{ \sin(x) }{ x}  \right] \:  = 1\\

 \\ \displaystyle\sf \: \: (2) \:  \:  \lim_{x\:\rightarrow\:0} \left[  \frac{ \tan(x) }{ x}  \right] \:  = 1\\

 \\ \displaystyle\sf \: \: (3) \:  \:  \lim_{x\:\rightarrow\:0} \left[  \frac{ 1 -  { \cos} (x) }{ x {}^{2} }  \right] \:  =  \frac{1}{2} \\

 \\ \rule{220}{2} \\

Similar questions