sin3x*sin2x lebnitz theorem
Attachments:
Answers
Answered by
0
Answer:
sinxsin2xsin3xdx
=
1
2
∫(2sin3xsinx)sin2xdx
=
1
2
∫(cos2x-cos4x)sin2xdx
=
1
4
∫(2sin2xcos2x-2cos4xsin2x)dx
=
1
4
∫[sin4x-(sin6x-sin2x)]dx
=
1
4
∫(sin4x-sin6x+sin2x)dx
=
1
4
[-
1
4
cos4x+
1
6
cos6x-
1
2
cos2x]+c
Similar questions