(sin3x+sinx)sinx+(cos3x-cosx)cosx=0
[2sin(3x+x)/2cos(3x-x)/2sinx]+
[(-2sin(3x+x)/2sin(3x-x)/2cosx]
[(2sin2x cosx)sinx]+[(-2sin2xsinx)cosx]
=0
Answers
Answered by
1
Answer:
cos3x+cos2x=sin(3x/2)+sin(x/2)
∴2cos
2
5x
cos
2
x
−2sinxcos
2
x
=0
∴2cos(x/2)[cos(5x/2)−sinx]=0
cos(
2
x
)=0 ∴
2
x
=(n+
2
1
)π
or x=2nπ+π,
n=0, x=π as 0≤x≤2π
cos
2
5x
=sinx=cos(
2
π
−x)
2
5x
=2nπ±(
2
π
−x)
Taking +ive sign (5x/2)+x=2nπ+π/2,
(7x/2)=(4n+1)(π/2)
∴x=(4n+1)π/7
n=0,x=π/7,n=1,x=5π/7,n=2,x=9π/7,
n=3,x=13π/7
Now taking −ive sign,
(5x/2)−x=2nπ−π/2
or (3x/2)=(4n−1)π/2
∴x=(4n−1)π/3,
∴ For n=1, x=π.
∴x=
7
π
,
7
5π
,π,
7
9π
,
7
13π
.
Step-by-step explanation:
please follow me
Similar questions