sin4 a+2sin²a[1-1/cosec²a]
-cos4 a = ......
Answers
Answered by
1
Answer:
Step-by-step explanation:
Sin⁴A + 2Sin²A ( 1 - 1/Cosec²A) - Cos⁴A
=> Sin⁴A + 2Sin²A (1 - Sin²A) - Cos⁴A
=> Sin⁴A - Cos⁴A + 2Sin²ACos²A (∵ 1 - Sin²A = Cos²A)
=> (Sin²A)² - (Cos²A)² + 2Sin²ACos²A
// (Sin²A)² - (Cos²A)² is of form a² - b²; But a² - b² = (a + b) (a - b)
=> (Sin²A + Cos²A) (Sin²A - Cos²A) + 2Sin²ACos²A (∵ Sin²A + Cos²A = 1)
=> Sin²A - Cos²A + 2Sin²ACos²A
//from here you can have multiple ways to give the solution:
Option 1 : Option2:
=>1 - 2Cos²A + 2Sin²A Cos²A | => 1/2[4SinACosA]² - (Cos²A - Sin²A)
=> 1 - 2Cos²A ( 1 - Sin²A) | => 1/2 * Sin²2A - Cos2A
=> 1 - 2Cos⁴A | => SIn²2A/2 - Cos2A.
Similar questions