Math, asked by wristgaming007, 7 months ago

sin45°cos45°-sin30°=?

Answers

Answered by ItzDvilJatin2
43

sin45 =  \frac{ 1 }{2}

cos45 =  \frac{1}{2}

sin30 =  \frac{1}{ \sqrt{2} }

\:put\:all\:these\:values\:in\:the\:given\: equation

\dfrac{1}{2} ×\dfrac{1}{2} - \dfrac{1}{√2}

\dfrac{1}{4} - \dfrac{1}{√2}

\dfrac{√2 - 4}{4√2}

Rationalising The denominator

\dfrac{√2 - 4}{4√2}

\dfrac{√2 - 4}{4√2} × \dfrac{4√2}{4√2}

\dfrac{8 - 16√2}{32}

Hope it helps u

Answered by itscandycrush
42

Answer:

✈️{\huge{\pink{\underline{\underline{Question}}}}}✈️

sin45°cos45°-sin30°=?

✈️{\huge{\pink{\underline{\underline{Values}}}}}✈️

  • ✍️sin\ 45°=\frac{1}{2}✍️
  • ✍️cos\ 45°=\frac{1}{2}✍️
  • ✍️sin\ 30°=\frac{1}{\sqrt{2}}✍️

✈️{\huge{\pink{\underline{\underline{Solution}}}}}✈️

Put the values into given question;

sin\ 45°\ cos\ 45° -sin\ 30°

=\frac{1}{2}×\frac{1}{2}-\frac{1}{\sqrt{2}}

=\frac{1×1}{2×2}-\frac{1}{\sqrt{2}}

=\frac{1}{4}-\frac{1}{\sqrt{2}}

=\frac{\sqrt{2}-4}{4\sqrt{2}}

Now,Rationalise the term;

=\frac{\sqrt{2}-4}{4\sqrt{2}}×\frac{4\sqrt{2}}{4\sqrt{2}}

=>\frac{4\sqrt{2}×(\sqrt{2}-4)}{{4\sqrt{2}}^{2}}

=>\frac{8-16\sqrt{2}}{32}


ItzDvilJatin2: wow answer
itscandycrush: Thanks
itscandycrush: Your answer is also awesome.
ItzDvilJatin2: hm
Similar questions