Math, asked by Anonymous, 1 year ago

sin45cos45cos60/sin60cos30tan45

Answers

Answered by jitekumar4201
2

Answer:

\dfrac{Sin45.Cos45.Cos60}{Sin60.Cos30.tan45} = \dfrac{1}{3}

Step-by-step explanation:

We have-

\dfrac{Sin45.Cos45.Cos60}{Sin60.Cos30.tan45}

We know that-

Sin45 = \dfrac{1}{\sqrt{2}}

Cos45 = \dfrac{1}{\sqrt{2}}

Cos60 = \dfrac{1}{2}

Sin60 = \dfrac{\sqrt{3} }{2}

Cos30 = \dfrac{\sqrt{3} }{2}

tan45 = 1

So, \dfrac{Sin45.Cos45.Cos60}{Sin60.Cos30.tan45}

= \dfrac{\dfrac{1}{\sqrt{2}} \times \dfrac{1}{\sqrt{2} } \times \dfrac{1}{2}   }{\dfrac{\sqrt{3} }{2} \times\dfrac{\sqrt{3} }{2} \times 1  }

= \dfrac{\dfrac{1}{2} \times\dfrac{1}{2}  }{\dfrac{3}{4} }

= \dfrac{1}{4} \times \dfrac{4}{3}

= \dfrac{1}{3}

Hence, \dfrac{Sin45.Cos45.Cos60}{Sin60.Cos30.tan45} = \dfrac{1}{3}

Similar questions