Math, asked by anushshende12, 3 months ago

sin⁴A - cos⁴A = 2sin²A-1 prove that​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Identities used :-

 \boxed{ \bf{ \:  {x}^{2} -  {y}^{2} = (x + y)(x - y)}}

 \boxed{ \bf{ \:  {sin}^{2} x +  {cos}^{2} x = 1}}

Let's solve the problem now!!

Consider,

\rm :\longmapsto\: {sin}^{4}A -  {cos}^{4}A

\rm :\longmapsto\:  =  \: {\bigg( {sin}^{2}A  \bigg) }^{2}  - {\bigg( {cos}^{2}A  \bigg) }^{2}

\rm :\longmapsto\: =  \: ( {sin}^{2} A +  {cos}^{2} A)( {sin}^{2} A -  {cos}^{2} A)

\rm :\longmapsto\: =  \: 1 \times  \bigg( {sin}^{2} A - (1 -  {sin}^{2}A) \bigg)

\rm :\longmapsto\: =  \: 2 {sin}^{2} A - 1

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions