Math, asked by Lukesan235, 1 year ago

Sin4A+sin2A divide by 1+cos2A+cos4A= tan2A prove it

Answers

Answered by sivaprasath
3

Answer:

Step-by-step explanation:

Given :

To Prove :

\frac{sin \ 4A \ + \ sin \ 2A}{1 \ + \ cos \ 2A \ + \ cos \ 4A} = tan \ 2A

Proof :

We know that,

sin 2A = 2 sin A cos A

cos 2A = 2 cos²A - 1

LHS = \frac{sin \ 4A \ + \ sin \ 2A}{1 \ + \ cos \ 2A \ + \ cos \ 4A}

\frac{sin \ 2(2A) \ + \ sin \ 2A}{1 \ + \ cos \ 2A \ + \ cos \ 2(2A)}

\frac{(2 \ sin \ 2A \ cos \ 2A) \ + \ sin \ 2A}{1 \ + \ cos \ 2A \ + \ (2cos^22A \ - \ 1)}

\frac{(2 \ cos \ 2A \ + \ 1) sin \ 2A}{ \ cos \ 2A \ + \ 2cos^22A}

\frac{(2 \ cos \ 2A \ + \ 1) sin \ 2A}{(1 \ + \ 2cos \ 2A) \ cos \ 2A}

\frac{sin \ 2A}{cos \ 2A} = tan \ 2A = RHS

Hence, proved.

Answered by preeth3
2
Hop this helps you and thankyou for asking me the question if you have any doubt please ask me
Attachments:
Similar questions