Math, asked by ak6582148, 11 months ago

Sin⁴A + Sin²ACos²A =Sin²A ?​

Answers

Answered by abhishekmaths
2

TO PROVE :

 \sin {}^{4} \alpha  +  { \sin }^{2} \alpha  \cos{}^{2} \alpha  =  \sin{}^{2} \alpha

PROOF :

L.H.S

 \sin {}^{2} \alpha ( \sin{}^{2} \alpha  +  \cos{}^{2} \alpha ) \\  \\ but \\  { \sin }^{2}  \gamma  +   { \cos }^{2} \gamma  = 1 \\ it \: is \: an \: identity \\  \\ therefore \\  sin {}^{2} \alpha ( \sin{}^{2} \alpha  +  \cos{}^{2} \alpha ) \\  =   =  >  \sin {}^{2} \alpha  \\  \\

L.H.S = R.H.S

HENCE PROVED

THANK YOU ♥️

HOPE IT HELPS YOU

Answered by PiaDeveau
2

By L.H.S = R,H.S

Step-by-step explanation:

Given:

Sin⁴A + Sin²ACos²A = Sin²A

Computation:

From L.H.S

⇒ Sin⁴A + Sin²ACos²A

Take Sin²A as common from the following equation;

⇒ Sin²A (Sin²A + Cos²A)

⇒ We know that; Sin²α+ Cos²α = 1

⇒ So, Sin²A + Cos²A = 1

By putting value of Sin²A + Cos²A = 1, we get

⇒ Sin²A (1)

⇒ Sin²A R.H.S

Therefore, we say that Sin⁴A + Sin²ACos²A = Sin²A

Learn more:

https://brainly.in/question/9363518

#learnwithbrainly

Similar questions