Math, asked by maliktrainer, 1 year ago

sin⁴q-cos⁴q=sin²q-cos²q

Answers

Answered by AbhijithPrakash
9

Answer:

\mathrm{Prove\:}\sin ^4\left(q\right)-\cos ^4\left(q\right)=\sin ^2\left(q\right)-\cos ^2\left(q\right):\quad \mathrm{True}

Step-by-step explanation:

\sin ^4\left(q\right)-\cos ^4\left(q\right)=\sin ^2\left(q\right)-\cos ^2\left(q\right)

\gray{\mathrm{Manipulating\:left\:side}}

\gray{\sin ^4\left(q\right)-\cos ^4\left(q\right)}

\black{\mathrm{Factor}\:-\cos ^4\left(q\right)+\sin ^4\left(q\right):}

-\cos ^4\left(q\right)+\sin ^4\left(q\right)

\gray{\mathrm{Rewrite\:}\sin ^4\left(q\right)-\cos ^4\left(q\right)\mathrm{\:as\:}\left(\sin ^2\left(q\right)\right)^2-\left(\cos ^2\left(q\right)\right)^2}

=\left(\sin ^2\left(q\right)\right)^2-\left(\cos ^2\left(q\right)\right)^2

\gray{\mathrm{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}x^2-y^2=\left(x+y\right)\left(x-y\right)}

\gray{\left(\sin ^2\left(q\right)\right)^2-\left(\cos ^2\left(q\right)\right)^2=\left(\sin ^2\left(q\right)+\cos ^2\left(q\right)\right)\left(\sin ^2\left(q\right)-\cos ^2\left(q\right)\right)}

=\left(\sin ^2\left(q\right)+\cos ^2\left(q\right)\right)\left(\sin ^2\left(q\right)-\cos ^2\left(q\right)\right)

\gray{\mathrm{Factor}\:\sin ^2\left(q\right)-\cos ^2\left(q\right):\quad \left(\sin \left(q\right)+\cos \left(q\right)\right)\left(\sin \left(q\right)-\cos \left(q\right)\right)}

=\left(\sin ^2\left(q\right)+\cos ^2\left(q\right)\right)\left(\sin \left(q\right)+\cos \left(q\right)\right)\left(\sin \left(q\right)-\cos \left(q\right)\right)

=\left(-\cos \left(q\right)+\sin \left(q\right)\right)\left(\cos \left(q\right)+\sin \left(q\right)\right)\left(\cos ^2\left(q\right)+\sin ^2\left(q\right)\right)

\gray{\mathrm{Use\:the\:following\:identity}:\quad \cos ^2\left(x\right)+\sin ^2\left(x\right)=1}

=\left(-\cos \left(q\right)+\sin \left(q\right)\right)\left(\cos \left(q\right)+\sin \left(q\right)\right)

\black{\mathrm{Expand}\:\left(-\cos \left(q\right)+\sin \left(q\right)\right)\left(\cos \left(q\right)+\sin \left(q\right)\right):}

\left(-\cos \left(q\right)+\sin \left(q\right)\right)\left(\cos \left(q\right)+\sin \left(q\right)\right)

\gray{\mathrm{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}\left(a-b\right)\left(a+b\right)=a^2-b^2}

\gray{a=\sin \left(q\right),\:b=\cos \left(q\right)}

=\sin ^2\left(q\right)-\cos ^2\left(q\right)

\gray{\mathrm{We\:showed\:that\:the\:two\:sides\:could\:take\:the\:same\:form}}

\Rightarrow \mathrm{True}

Answered by Anonymous
14

\underline{\textbf{\large{To prove: }}}

\sf \underline{sin^4q-cos^4q=sin^2q-cos^2q}

\underline{\textbf{\large{Proof:}}}

LHS = \sf sin^4q - cos^4q

 =\sf  (\sin{}^{2} q) ^{2}  -  ({ \cos }^{2}q ){}^{2}

As we know the identity,

[\sf( a^2 - b^2 ) = (a + b) (a - b)]

 =\sf ( { \sin}^{2}q  +  { \cos }^{2}q)( { \sin}^{2}q -  {  \cos }^{2}q)

we know ,[\sf\ sin^2(theta)+ cos^2(theta) = 1]

therefore,

 =\sf (1)( { \sin}^{2}q  -  { \cos }^{2}q)

 =\sf  { \sin }^{2}q -  {  \cos }^{2}q

= RHS

hence proved.

Similar questions