sin4q-cos4q=sin2q-cos2q
Answers
Answered by
2
Answer:
sin⁴Q-cos⁴Q = sin²Q-cos²Q
Step-by-step explanation:
LHS = sin⁴Q-cos⁴Q
= (Sin²Q)² - (cos²Q)²
= (sin²Q+cos²Q)(sin²Q-cos²Q)
/* By algebraic identity:
a²-b² = (a+b)(a-b) */
= 1(sin²Q-cos²Q)
/* By Trigonometric identity:
Sin²A+cos²A = 1 */
= sin²Q-cos²Q
= RHS
Therefore,
sin⁴Q-cos⁴Q = sin²Q-cos²Q
•••♪
Answered by
1
Given:
To prove:
L.H.S =R.H.S
Solution:
Formula:
Solve L.H.S part:
The final value is L.H.S=R.H.S
Similar questions