sin⁴theta - cos⁴ theta/ sin² theta - cos²theta
Answers
Answered by
3
Answer:
A=sin2θ+cos4θ
=sin2θ+cos2θ.cos2θ
=sin2θ+cos2θ(1−sin2θ)
=sin2θ+cos2θ−sin2θcos2θ
=1−41(2sinθcosθ)2
=1−41sin22θ
Min.(sin22θ)=0
Max.(sin22θ)=1
Min.(A)=1−41.Max(sin22θ)
=1−41.1=43
Max.(A)=1−41.Min.(sin22
Ans 3 upon 4 < A < 1
Answered by
0
Answer:
1
Step-by-step explanation:
Firstly,
sin⁴theta - cos⁴ theta = (sin² theta - cos²theta) (sin² theta + cos²theta)
[ a²-b² = (a+b) (a-b)]
Thus, sin² theta - cos²theta, gets cancelled out from numberator and denominator.
=> The given expression is now equal to sin² theta + cos²theta
Since, according to identity, sin² theta + cos²theta= 1
Hence, answer is 1.
I hope you got the answer!
Similar questions