Math, asked by falak72, 5 months ago

(sin4theta-cos4thetha+1)cosec2thetha =2​

Answers

Answered by Anonymous
38

\huge{\mathbb{\red{ANSWER:-}}}

\sf{(Sin^{4} O - Cos^{4} O + 1)(Cosec^{2} O)}

\sf{[(Sin^{4} O - Cos^{4} O) + 1](Cosec^{2} O)}

\sf\small\boxed{(a^{2} - b^{2}) = (a + b)(a - b)}

\sf{[(Sin^{2} O)^{2}  - (Cos^{2} O)^{2} + 1](Cosec^{2} O)}

\sf{[(Sin^{2} O + Cos^{2} O)(Sin^{2} O - Cos^{2} O) + 1](Cosec^{2} O)}

\sf{\sf\boxed{Sin^{2} O + Cos^{2} O = 1}}

\sf{[1(Sin^{2} O - Cos^{2} O) + 1](Cosec^{2} O)}

\sf{[Sin^{2} O - Cos^{2} O + 1](Cosec^{2} O)}

\sf{[Sin^{2} O + 1 - Cos^{2} O](Cosec^{2} O)}

\sf{[Sin^{2} O + Sin^{2} O](Cosec^{2} O)}

\sf{2Sin^{2} O\times Cosec^{2} O}

\sf{2(SinO\times CosecO)^{2}}

\sf{\sf\boxed{SinO\times CosecO = 1}}

\sf{2(1)^{2}}

\sf{2(1)}

\sf{2}

\sf{HENCE \: PROOF}

Extra Related Formulas :-

\sf{(CosO\times SecO) = 1}

\sf{(tanO\times CotO) = 1}

\sf{[Sec^{2} O = (1 + tan^{2} O)]}

\sf{[Cosec^{2} O = (1 + Cot^{2} O)]}

Answered by ItźDyñamicgirł
12

Question

( Sin4theta - cos4theta + 1 ) cosec2theta = 2

 \sf \color {purple} \large \huge \:ANSWER

( { \sin}^{4} 0 -   { \cos}^{4} 0 + 1) { \cosec}^{2} 0

 \sf \implies \:  { (\sin}^{2} 0 {)}^{2}  -   ({ \cos}^{2} 0 {)}^{2}  + 1 \:  {cosec}^{2} 0.

  \\  \sf \: \implies { ((\sin}^{2}) 0 +  {( \cos }^{2}0 {)}^{2}  \: (  { \sin}^{2} 0 -  { \cos}^{2} 0 + 1) { \cosec}^{2} 0 + 1

 \\  \implies \: ( { \sin}^{2} 0 -  { \cos }^{2} 0 + 1) \:  \dfrac{1}{ { \sin}^{2}0}

As we know that

 { \sin}^{2} 0 +  { \cos}^{2}  = 1 \\ 1 =  { \cos}^{2} 0 =  { \sin}^{2}0

  \\  \color{blue} \: \sf \implies(2 { \sin}^{2}0) \:  \frac{1}{ { \sin}^{2}0  }   = 2

Similar questions