sin⁴x-cos⁴x+1=2sin²x
Answers
Answered by
1
Answer:
To prove:
sin⁴x-cos⁴x+1 = 2sin²x
Proof:
Solving LHS:
=sin⁴x-cos⁴x+1
= (sin² x)² - (cos² x)² +1 [ Identity: (a)²-(b)²= (a+b) (a-b) ]
= (sin² x + cos² x) × (sin² x - cos² x) + 1 [a= sin² x , b= cos² x]
= 1 × (sin² x - cos² x) + 1 [ sin² x + cos² x =1 ]
= sin² x - cos² x+ 1
= sin² x - (1 - sin² x) + 1 [ sin² x + cos² x =1 => cos² x = 1 - sin² x]
= sin² x - 1 + sin² x + 1 [Opening the bracket]
= (sin² x + sin² x) + (1 - 1)
= 2sin² x = RHS
Hence, Proved
Similar questions