Math, asked by pa7852251, 9 months ago

sin⁴x-cos⁴x/sin²x-cos²x= 1​

Answers

Answered by tarracharan
2

{\bold{\huge{\underline{\blue{\sf{Question:}}}}}}

{\sf{Prove \: \: \frac {(sin⁴x - cos⁴x)}{(sin²x - cos²x )}= \: 1}}

{\bold{\huge{\underline{\orange{\sf{Formulas:}}}}}}

{\boxed{\sf{sin²x + cos²x = 1}}}

{\boxed{\sf{a² - b² = (a + b)(a - b)}}}

{\bold{\huge{\underline{\red{\sf{Solution:}}}}}}

 \frac{ {sin}^{4} x - {cos}^{4} x }{ {sin}^{2}x - cos ^{2} x }  = 1 \: \: \: \: \: \: \:  \: \: \: \: \: \: \: \: \: \:  \: \: \: \: \: \: \: \: \: \: \:  \: \: \: \: \: \: \\  \frac{({sin}^{2} x + cos ^{2} x)({sin}^{2} x  -  cos ^{2} x)}{({sin}^{2} x  -  cos ^{2} x)}  = 1 \\ {sin}^{2} x + cos ^{2} x = 1 \: \: \: \: \: \: \:  \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \: \: \: \: \: \:  \: \: \: \:

{\boxed{\sf{★ \: Hence \: proved \: ★}}}

Answered by lion7979
2

Answer:

sin⁴x-cos⁴x/sin²x-cos²x= 1

Answer:-

LHS:-

=sin⁴x-cos⁴x/sin²x-cos²x

(sin²x)²-(cos²x)²

=__________________

sin²x-cos²x

(sin²x+cos²x)(sin²x-cos²x)

=____________________

sin²x-cos²x

The numerator and denominator get cancelled,

And sin²x+cos²x will remain....

As per theorem,

sin²A+cos²A=1

Hope it will helps you...............

Mark me as brainliest if u can

Similar questions