sin4xcos4x=1-2sin2xcos2x
Answers
Answered by
2
LHS- sin4x + cos4x
= (sin2x)2 + (cos2x)2
= (sin2x + cos2x)2 - 2sin2xcos2x {since a2 +b2 = (a+b)2 - 2ab}
= 12 - 2sin2xcos2x {since sin2x +cos2x = 1}
= 1 - 2sin2xcos2x
= RHS
Hope it helps.
cheers!!!
= (sin2x)2 + (cos2x)2
= (sin2x + cos2x)2 - 2sin2xcos2x {since a2 +b2 = (a+b)2 - 2ab}
= 12 - 2sin2xcos2x {since sin2x +cos2x = 1}
= 1 - 2sin2xcos2x
= RHS
Hope it helps.
cheers!!!
Answered by
5
hello mate
here is your solution
L.H.S.=sin4x+cos4x
=(sin2x)2+(cos2x)2
=(sin2+cos2x)2
−2sin2xcos2x
=(1)2−2sin2xcos2x
=1−2sin2xcos2x
=R.H.S.
⇒sin4x+cos4x=1
−2sin2xcos2x
I hope helps you
here is your solution
L.H.S.=sin4x+cos4x
=(sin2x)2+(cos2x)2
=(sin2+cos2x)2
−2sin2xcos2x
=(1)2−2sin2xcos2x
=1−2sin2xcos2x
=R.H.S.
⇒sin4x+cos4x=1
−2sin2xcos2x
I hope helps you
Similar questions