Math, asked by psatyam8107, 1 year ago

Sin5a+cos4a=2 find the number of solutions

Answers

Answered by kishanpentyala
1

let \:  \: a =  \sin(5a)  \\  \:  \:  \:  \:  \:  \:  \: b = \cos(4a)  \\ given \: a + b = 2 \\ a \: or \: b  < 1\: then \: b \: or \: a > 1 \: which \: is \: not \: possible \\ so \:  \sin(5a)  = 1 \:  \: and \:  \:  \cos(4a)  = 1 \\ 5a = n\pi +  {( - 1)}^{n}  \frac{\pi}{2}   \:  \:  \:  \:  \:  \:  \: 4a = 2n\pi +  - (0)\\ a =  \frac{n\pi}{5}  +  {( - 1)}^{n}  \frac{\pi}{2}  \:  \:  \:  \:  or\:  \: \:  \: a =  \frac{n\pi}{2}
hope it helps
Similar questions