Math, asked by kaushal2626, 8 months ago

sin6theeta+cos6theeta+3sin²theetacos²theeta​

Answers

Answered by Anonymous
1

Answer:

(sin^2theeta +cos^2theeta)^3

Step-by-step explanation:

sin^6theeta= (sin^2theeta)^3

cos^6theeta= (cos^2theeta)^3

according to problem;

  • multiply (sin^2theeta+cos^2theeta) to

(3sin^2theeta cos^2theeta)

  • (sin^2theeta)^3+(cos^2theeta)^3+3sin^2theeta cos^2theeta( sin^2theeta+cos^2theeta)

  • this is in the form of (a+b)^3

  • a = sin^2theeta, b= cos^2 2theeta

  • (sin^2theeta +cos^2theeta)^3

Answered by AdorableMe
14

Answer :-

→ 1

Explanation :-

Solving \sf{sin^6\theta+cos^6\theta} :-

\sf{sin^6\theta+cos^6\theta=sin^6\theta+cos^6\theta+1-1}

\sf{sin^6\theta+cos^6\theta=sin^6\theta+cos^6\theta+1-(1)^3}

\sf{=sin^6 \theta+cos^6 \theta-(sin^2\theta+cos^2\theta)^3+1}

\sf{=sin^6\theta+cos^6\theta-sin^6\theta-3sin^4\theta .cos^2\theta-3sin^2\theta.cos^4\theta-sin^6\theta+1}

\sf{=1-3sin^2\theta .cos^2\theta (sin^2\theta +cos^2\theta )}

\sf{=1-3sin^2\theta .cos^2\theta }

___________________

Now,

\sf{sin^ 6\theta+cos^6\theta+3sin^2\theta.cos^2\theta}

\sf{=(\sf{1-3sin^2\theta .cos^2\theta })+3sin^2\theta .cos^2\theta}

\sf{=1}

Therefore, the answer is 1.

Similar questions