Math, asked by hansdahparan99, 9 days ago

sin⁶x dx integrate the following​

Answers

Answered by BrainlyIAS
5

★ ═════════════════════ ★

Question :

\displaystyle \spadesuit\ \;  \sf \red{\int sin^6x\ dx}

Solution :

\rm sin^6x

:\implies\ \; \rm (sin^2x)^3

\\ :\implies\ \; \rm \left( \dfrac{1-cos\ 2x}{2} \right) ^3\\

\\ :\implies\ \; \rm \dfrac{1}{8} \left( 1-cos^3(2x) - 3\ cos(2x) + 3\ cos^2(2x) \right) \\

\bullet\ \; \pink{\bf cos^2x= \dfrac{1+cos\ (2x)}{2}}

\bullet\ \; \green{\bf cos^3x= \dfrac{cos\ (3x)+3\ cos\ x}{4}}

\\ :\implies\ \; \rm \dfrac{1}{8} \left( 1- 3\ cos(2x) + \dfrac{3}{2}\ +\dfrac{3}{2}\ cos(4x) - \dfrac{1}{4}\ cos(6x) - \dfrac{3}{4}\  cos(2x) \right) \\

\\ :\implies\ \; \rm \dfrac{1}{8} \left( \dfrac{5}{2} - \dfrac{15}{4}\ cos(2x) +\dfrac{3}{2}\ cos(4x) - \dfrac{1}{4}\ cos(6x)  \right) \\

So ,

\displaystyle  \sf \red{\int sin^6x\ dx}

\\ \displaystyle :\implies\ \; \rm \dfrac{1}{32} \int \left( 10 - 15\ cos(2x) +6\ cos(4x) -  cos(6x)  \right)\ dx \\

\\ \displaystyle :\implies\ \; \rm \dfrac{1}{32}  \left( 10x - \dfrac{15}{2}\ sin(2x) +\dfrac{6}{4}\ sin(4x) -  \dfrac{1}{6}\ sin(6x)  \right) \\

\\ \displaystyle :\implies\ \; \bf \dfrac{1}{384}  \left( 120x - 90\ sin(2x) +18\ sin(4x) -  2\ sin(6x)  \right)\ +c \\

★ ═════════════════════ ★

Similar questions