Math, asked by sujeethjaldani, 7 days ago

sin7 theta+sin 4 theta+sin theta=0 principal solution​

Answers

Answered by reshmasb1989
2

Answer:

hope it's clear to you

plz mark me for brain list

have a nice day

Attachments:
Answered by senboni123456
1

Step-by-step explanation:

We have,

 \sin(7 \theta)  +  \sin(4 \theta) +  \sin( \theta)   = 0

  \implies\sin(7 \theta) +  \sin( \theta) +  \sin(4 \theta)  = 0     \\

WE KNOW,  \rm \bold{sin(C)+sin(D)=2sin\bigg(\frac{C+D}{2} \bigg) cos\bigg(\frac{C-D}{2} \bigg)}\\

So, applying this formula on first two terms,

  \implies2\sin \bigg( \frac{7 \theta +  \theta }{2}\bigg)\cos \bigg( \frac{7 \theta  -  \theta }{2}\bigg)  +  \sin(4 \theta)  = 0     \\

  \implies2\sin \bigg( \frac{8 \theta  }{2}\bigg)\cos \bigg( \frac{ 6\theta   }{2}\bigg)  +  \sin(4 \theta)  = 0     \\

  \implies2\sin ( 4 \theta  )\cos (  3\theta   )  +  \sin(4 \theta)  = 0     \\

  \implies\sin ( 4 \theta  ) \{2\cos (  3\theta   )  +  1 \} = 0     \\

 \rm  Either \:  \: \sin ( 4 \theta  )  = 0 \:  \: \:  or \:  \:  \: 2\cos (  3\theta   )  +  1  = 0     \\

 \rm   \implies \:  \: 4 \theta    = n \pi \:  \: \:  or \:  \:  \: \cos (  3\theta   )  =  -  \frac{1}{2}     \\

 \rm   \implies \:  \:  \theta    = \frac{ n \pi}{4} \:  \: \:  or \:  \:  \: \cos (  3\theta   )  =   \cos \bigg( \frac{2\pi}{3} \bigg )     \\

 \rm   \implies \:  \:  \theta    = \frac{ n \pi}{4} \:  \: \:  or \:  \:  \:   3\theta   =   2m\pi \pm  \frac{2\pi}{3}      \\

 \rm   \implies \:  \:  \theta    = \frac{ n \pi}{4} \:  \: \:  or \:  \:  \:   \theta   =    \frac{2m\pi}{3} \pm  \frac{2\pi}{9}      \\

Where, \rm\:n,m\in\:I

Similar questions