Math, asked by varunchandra29pcmeb2, 1 year ago

sin70-cos40/cos50-sin20=1/√3

Answers

Answered by AyanSarkar
36
=sin70-sin50/cos50-cos70
=2cos(70+50)sin(70-50)/2sin(70+50)sin(70-50)
=2cos120°sin20°/2sin120°sin20°
=2*(-1/2)/2(√3/2)
=-1/√3
I getting the answer I'm minus sign,please recheck the question or may be the question is wrong

varunchandra29pcmeb2: what are studying
AyanSarkar: I can't understand your question about
varunchandra29pcmeb2: kk
AyanSarkar: what
varunchandra29pcmeb2: ntg
AyanSarkar: ntg????
Answered by AmoliAcharya
1

Given: Here we have the given equation sin70-cos40/cos50-sin20=1/√3

To solve: Here we have to solve the given equation

Solution:

Here we have the given equation

\[\begin{align}  & =\frac{sin70-sin50}{cos50-cos70} \\  & =\frac{2cos\left( 70+50 \right)sin\left( 70-50 \right)}{2sin\left( 70+50 \right)sin\left( 70-50 \right)} \\  & =\frac{2cos120{}^\circ sin20{}^\circ }{2sin120{}^\circ sin20{}^\circ } \\  & =\frac{\cos \left( 90+30 \right)}{\sin \left( 90+30 \right)} \\  & =\frac{-\sin 30}{\cos 30} \\  & =\frac{\left( -1/2 \right)}{\left( \surd 3/2 \right)} \\  & =-1/\surd 3 \\ \end{align}\]\[\begin{align}  & =\frac{sin70-sin50}{cos50-cos70} \\  & =\frac{2cos\left( 70+50 \right)sin\left( 70-50 \right)}{2sin\left( 70+50 \right)sin\left( 70-50 \right)} \\  & =\frac{2cos{{120}^{{}^\circ }}sin{{20}^{{}^\circ }}}{2sin{{120}^{{}^\circ }}sin{{20}^{{}^\circ }}} \\  &  \\ \end{align}\]\[=\frac{sin70-sin50}{cos50-cos70}\]

\[=\frac{2cos\left( 70+50 \right)sin\left( 70-50 \right)}{2sin\left( 70+50 \right)sin\left( 70-50 \right)}\]

\[=\frac{2cos{{120}^{{}^\circ }}sin{{20}^{{}^\circ }}}{2sin{{120}^{{}^\circ }}sin{{20}^{{}^\circ }}}\]

& =\frac{sin70-sin50}{cos50-cos70} \\

& =\frac{2cos\left( 70+50 \right)sin\left( 70-50 \right)}{2sin\left( 70+50 \right)sin\left( 70-50 \right)} \\  & =\frac{2cos120{}^\circ sin20{}^\circ }{2sin120{}^\circ sin20{}^\circ } \\  & =\frac{\cos \left( 90+30 \right)}{\sin \left( 90+30 \right)} \\  & =\frac{-\sin 30}{\cos 30} \\  & =\frac{\left( -1/2 \right)}{\left( \surd 3/2 \right)} \\  & =-1/\surd 3 \\

Final answer:

Hence the answer is -1/\sqrt3

Similar questions
Math, 1 year ago