Math, asked by unnatisahu2415, 1 month ago

sin70 +sin50 =√3 cos10​

Answers

Answered by mathdude500
3

\large\underline{\sf{To\:prove - }}

\red{\rm :\longmapsto\:sin70\degree  + sin50\degree  =  \sqrt{3} \:  cos10\degree }

\large\underline{\sf{Solution-}}

Consider LHS

\red{\rm :\longmapsto\:sin70\degree  + sin50\degree }

We know that

 \boxed{ \bf{ \: sinx + siny = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}

So, using this result, we get

\rm \:  =  \:2sin\bigg[\dfrac{70\degree  + 50\degree }{2} \bigg]cos\bigg[\dfrac{70\degree  - 50\degree }{2} \bigg]

\rm \:  =  \:2sin\bigg[\dfrac{120\degree }{2} \bigg]cos\bigg[\dfrac{20\degree}{2} \bigg]

\rm \:  =  \:2sin60\degree cos10\degree

\rm \:  =  \:2 \times \dfrac{ \sqrt{3} }{2}  \times cos10\degree

\rm \:  =  \: \sqrt{3}  \: cos10\degree

Hence,

\red {\boxed{ \bf{ \: {\bf :\longmapsto\:sin70\degree  + sin50\degree  =  \sqrt{3} \:  cos10\degree }}}}

Additional Information :-

 \boxed{ \bf{ \: sinx  -  siny = 2sin\bigg[\dfrac{x  -  y}{2} \bigg]cos\bigg[\dfrac{x  +  y}{2} \bigg]}}

 \boxed{ \bf{ \: cosx + cosy = 2cos\bigg[\dfrac{x  -  y}{2} \bigg]cos\bigg[\dfrac{x  +  y}{2} \bigg]}}

 \boxed{ \bf{ \: cosx  -  cosy = -  2sin\bigg[\dfrac{x  -  y}{2} \bigg]sin\bigg[\dfrac{x  +  y}{2} \bigg]}}

 \boxed{ \bf{ \: 2sinxcosy = sin(x + y) + sin(x - y)}}

 \boxed{ \bf{ \: 2cosxcosy = cos(x + y) + cos(x - y)}}

 \boxed{ \bf{ \: 2sinxsiny = cos(x - y) - cos(x + y)}}

Similar questions