Sin75+cos15+cos75 +sin15/cot5 ×cot30×cot35×cot55×cot85 solve for brainleist
Answers
Answered by
6
I hope this answer helps you
Attachments:
Answered by
3
We know by formulas that sin(A+B) = sinA.cosB+sinB.cosA
sin(A-B)=sinA.cosB-sinB.cosA
cos (A+B) = cosA.cosB-sinA.sinB
cos(A-B) = cos A.cosB+sin A.sin B
tan(A+B)=tanA+tanB1−tanA.tanB
tan(A−B)=tanA−tanB1+tanA.tanB
sin(45−30)=sin45.cos30−sin30.cos45=12√×3√2−12×12√
⇒sin15=3√22√−122√=3√−122√=3√−122√×22√22√=2(6√−2√8)=6√−2√4
sin(45+30)=sin45.cos30+sin30.cos45=12√×3√2+12×12√
⇒sin75=3√22√+122√=3√+122√=3√+122√×22√22√=2(6√+2√8)=6√+2√4
Similarly, we can find value of cos (A+B), cos (A-B), tan (A+B) and tan (A-B).
Also, cot(A+B)=1tan(A+B), sec(A+B)=1cos(A+B) and cosec(A+B)=1sin(A+B)
I hope it will help you
sin(A-B)=sinA.cosB-sinB.cosA
cos (A+B) = cosA.cosB-sinA.sinB
cos(A-B) = cos A.cosB+sin A.sin B
tan(A+B)=tanA+tanB1−tanA.tanB
tan(A−B)=tanA−tanB1+tanA.tanB
sin(45−30)=sin45.cos30−sin30.cos45=12√×3√2−12×12√
⇒sin15=3√22√−122√=3√−122√=3√−122√×22√22√=2(6√−2√8)=6√−2√4
sin(45+30)=sin45.cos30+sin30.cos45=12√×3√2+12×12√
⇒sin75=3√22√+122√=3√+122√=3√+122√×22√22√=2(6√+2√8)=6√+2√4
Similarly, we can find value of cos (A+B), cos (A-B), tan (A+B) and tan (A-B).
Also, cot(A+B)=1tan(A+B), sec(A+B)=1cos(A+B) and cosec(A+B)=1sin(A+B)
I hope it will help you
Similar questions