Math, asked by kaushik27, 1 year ago

sin75°-sin 15°\cos75°+cos15°

Answers

Answered by Ezekiel9
35
The answer is in the picture.
Attachments:

kaushik27: this correct thanks bro
Ezekiel9: Welcome dear
kaushik27: send me mobile no
Ezekiel9: Why
kaushik27: for asking doubts bro
kaushik27: where are you from bro
Ezekiel9: Uttrakhand
Ezekiel9: just whatsapp no calls
kaushik27: ok bro
Answered by mysticd
40

Answer:

\frac{sin75-sin15}{cos75+cos15}

=\frac{\sqrt{3}}{3}

Explanation:

Given \frac{sin75-sin15}{cos75+cos15}

=\frac{sin(90-15)-sin15}{cos(90-15)+cos15}

/* i) sin(90-A) = cosA

ii)cos(90-15) = sin15 */

=\frac{cos15-sin15}{sin15+cos15}

Multiply numerator and denominator by (cos15 - sin15), we get

= \frac{(cos15-sin15)(cos15-sin15)}{(cos15+sin15)(cos15-sin15)}

= \frac{(cos15-sin15)^{2}}{cos^{2}15-sin^{2}15}

/* x²-y² = (x+y)(x-y) */

= \frac{cos^{2}15+sin^{2}15-2cos15sin15}{cos(2\times15)}

/* cos²A - sin²A = sin2A */

=\frac{1-sin(2\times15)}{cos30}

/* 2sinAcosA = sin2A */

= \frac{1-sin30}{cos30}

= \frac{1-\frac{1}{2}}{\frac{\sqrt{3}}{2}}

= \frac{\frac{(2-1)}{2}}{\frac{\sqrt{3}}{2}}

= \frac{1}{\sqrt{3}}

Rationalising the denominator, we get

= \frac{\sqrt{3}}{\sqrt{3}\times \sqrt{3}}

= \frac{\sqrt{3}}{3}

••••

Similar questions