Sin75°+sin 15°/sin75°-sin15°=√3
Answers
Answered by
1
Step-by-step explanation:
Formula,
sinA + sinB = 2sin(A+B/2)cos(A-B/2)
sinA - sinB = 2cos(A+B/2)sin(A-B/2)
sin75 + sin15 = 2sin(45)cos(30) = root3 / root2
sin75 - sin15 = 2cos(45)sin(30) = 1 / root 2
Therefore,
LHS = (root3/root2) / (1/root2)
= root3 = RHS
Hence, proved
Similar questions