sin8A-cos8A=(sin4A+cos4A)(1-2cos2A)
Answers
Answer:
We have to prove the relation:
\sin^8\theta-\cos^8\theta=(\sin^2\theta-\cos^2\theta)(1-2\sin^2\theta\cos^2\theta)
We will evaluate the left hand side term to obtain the right hand side term.
Step-by-step explanation:
On taking Left hand side:
\sin^8\theta-\cos^8\theta=(\sin^4\theta)^2-(\cos^4\theta)^2\\\\=(\sin^4\theta-\cos^4\theta)(\sin^4\theta+\cos^4\theta)
Since, we know that:
a^2-b^2=(a+b)(a-b)
=[(\sin^2\theta)^2-(\cos^2\theta)^2][(\sin^2\theta)^2+(\cos^2\theta)^2]\\\\=(\sin^2\theta-\cos^2\theta)(\sin^2\theta+\cos^2\theta)[(\sin^2\theta+\cos^2\theta)^2-2\sin^2\theta\cos^2\theta]
Also we know that:
\sin^2\theta+\cos^2\theta=1
and
a^2+b^2=(a+b)^2-2ab )
=(\sin^2\theta-\cos^2\theta)(1-2\sin^2\theta\cos^2\theta)
Hence, the expression is proved.
Hence, we get
\sin^8\theta-\cos^8\theta=(\sin^2\theta-\cos^2\theta)(1-2\sin^2\theta\cos^2\theta)