sin8Q-cos8 Q
please this is urgent
Answers
Answered by
1
Answer:
Step-by-step explanation:
Sin⁸θ - Cos⁸θ
=> (Sin⁴θ)² - (Cos⁴θ)²
=> ( Sin⁴θ - Cos⁴θ) (Sin⁴θ + Cos⁴θ) [ ∵ a² - b² = (a - b)(a + b)]
=> [(Sin²θ)² - (Cos²θ)²][(Sin²θ)² + (Cos²θ)²]
//We know that a² - b² = (a - b)(a + b)
a² + b² = a² + b²+2ab - 2ab = (a + b)² - 2ab
=> [(Sin²θ - Cos²θ)(Sin²θ + Cos²θ)][(Sin²θ)² + (Cos²θ)² + 2Sin²θCos²θ -
2Sin²θCos²θ]
=> [(Sin²θ - Cos²θ)(Sin²θ + Cos²θ)] [ (Sin² + Cos²θ)² - 2Sin²θCos²θ]
=> (Sin²θ - Cos²θ)( 1 - 2Sin²θCos²θ) [∵ Sin²θ + Cos²θ = 1]
Similar questions