Math, asked by rammii, 1 year ago

sin8x+sin2x/cos2x-cos8x=cot3x

Answers

Answered by belwinbenni
25
Sin8x + Sin2x/Cos2x - Cos2x
>(2sin(x+y/2)cos(x-y/2))/
(-2sin(x+y/2)sin(x-y/2)

>2sin5xcos3x/-2sin3x(-sin5x)
>2sin5xcos3x/2sin3xsin5x
>Cos2x/sin3x
>Cot3x
Answered by pinquancaro
47

Answer and Explanation:

To show :  \frac{\sin8x+\sin2x}{\cos 2x-\cos 8x} =\cot 3x

Solution :

Taking LHS,

\frac{\sin8x+\sin2x}{\cos 2x-\cos 8x}

Applying formula,

\sin A+\sin B =2\sin (\frac{A+B}{2})\cos (\frac{A-B}{2})

\cos A-\cos B =-2\sin (\frac{A+B}{2})\sin (\frac{A-B}{2})

Where, A=8x and B = 2x

=\frac{2\sin (\frac{8x+2x}{2})\cos (\frac{8x-2x}{2})}{-2\sin (\frac{2x+8x}{2})\sin (\frac{2x-8x}{2})}

=\frac{2\sin (\frac{10x}{2})\cos (\frac{6x}{2})}{-2\sin (\frac{10x}{2})\sin (\frac{-6x}{2})}

=\frac{2\sin (5x)\cos (3x)}{-2\sin (5x)\sin (-3x)}

We know, \sin (-\theta)=-\sin \theta

=\frac{\cos (3x)}{\sin (3x)}

=\cot (3x)

=RHS

Hence, LHS=RHS

Similar questions