Math, asked by lohithjayam, 18 days ago

(sin90°+cos60°+cos45°)×(sin30°+cos0°-cos45°)​

Answers

Answered by sarahssynergy
0

Given: (sin90°+cos60°+cos45°)×(sin30°+cos0°-cos45°)

As we know that,

                              Sin90°= 1

                             Cos60°= 1/2

                              Cos45°= 1/\sqrt{2}

                              Sin30°= 1/2

                              Cos0°= 1

putting all the values in given equation,

             = (1+\frac{1}{2} +\frac{1}{\sqrt{2} })×(\frac{1}{1} +1-\frac{1}{\sqrt{2} } )

             = (\frac{\sqrt[2]{2}+\sqrt{2} +2 }{\sqrt[2]{2} })×(\frac{\sqrt{2}+\sqrt[2]{2}-2  }{\sqrt[2]{2} } )

             =(\frac{\sqrt[3]{2}+2 }{\sqrt[2]{2} } )×(\frac{\sqrt[3]{2}-2 }{\sqrt[2]{2} } )

             =\frac{(\sqrt[3]{2}) ^{2}-2^{2}  }{8}

             = \frac{9(2)-4}{8}

             = \frac{18-4}{8}

             = \frac{14}{8}

             =\frac{7}{4}

  Hence the final value of the given equation is 7/4.

Answered by himanshuhrathore
0

Answer:

Solutions

(cos0

o

+sin45

o

+sin30

o

)(sin90

o

−cos45

o

+cos60

o

)

=(1+

2

1

+

2

1

)(1−

2

1

+

2

1

)

=(1+

2

1

+

2

1

)(1+

2

1

2

1

)

=(

2

3

+

2

1

)(

2

3

2

1

)

=(

2

3

)

2

−(

2

1

)

2

=

4

9

2

1

=

4

7

Similar questions