Math, asked by sukeshkumartrivedi30, 10 months ago

sinA=1.141cosA=tanA

Answers

Answered by synj231
0

answer:

follow me and Mark me as brainalist I will give you answer ok

Answered by Oyendrila2
0

ANSWER :–

 \\ { \bold{ I =  \int \frac{x  \: {\sec}^{2}  ( {x}^{2} )}{ {tan}^{3}( {x}^{2} ) }.dx }} \\

• We should write this as –

 \\ { \bold{ I =  \int \frac{x  \: {\sec}^{2}  ( {x}^{2} )}{[ {tan}( {x}^{2} )]  ^{3}} .dx }} \\

▪︎ Now let's use substitution method –

• Put  \\  \:  \: { \bold{ tan ({x}^{2} ) = t  \:  \:  - }} \\

• Now Differentiate with respect to 't' –

 \\  \:  \implies { \bold{(2x) \sec ^{2}  ({x}^{2} ). \dfrac{dx}{dt}  = 1 \:  \:  }} \\

 \\  \:  \implies { \bold{x.\sec ^{2}  ({x}^{2} ).dx =   \frac{1}{2}  dt \:  \:  }} \\

• So that –

 \\ \implies { \bold{ I =  \int \frac{dt}{2(t) ^{3}} }} \\

 \\ \implies { \bold{ I =  \int \dfrac{ {t}^{ - 3}. dt}{2} }} \\

 \\  \implies{ \bold{ I =  \dfrac{1}{2}  \int {{t}^{ - 3}. dt} }} \\

 \\  \implies{ \bold{ I =  \dfrac{1}{2}     [\dfrac{ {t}^{ - 3 + 1} }{ - 3 + 1} ] + c}}  \\

 \\  \implies{ \bold{ I =  \dfrac{1}{2}     [\dfrac{ {t}^{ - 2} }{ - 2} ] + c}}  \\

 \\  \implies{ \bold{ I = -   \dfrac{1}{4 {t}^{2} } + c}}  \\

• Now replace 't' –

 \\  \implies \large{ \red{ \boxed{ \bold{ I = -   \dfrac{1}{4 { [tan( {x}^{2} )] }^{2} } + c}}}}  \\

Similar questions