SinA /1+cosA + 1+cos/sinA=2 cosecA
Answers
Answered by
1
Step-by-step explanation:
hope it helps you ☺️...
Attachments:
Answered by
1
Answer:
Step-by-step explanation:
LHS=SinA/1+cosA+1+cosA/sinA
=sinA×sinA+(1+cosA)whole square/(1+cosA)sinA
=sin square A+1+(cosA)whole square /(1+cosA)sinA
=sin square A+1 square +cos square A +2×1×cosA/(1+cosA)sinA
=sin square A +1+cos square A +2 cosA/(1+cosA)sinA
=1+1+2cosA/(1+cosA)sinA
=2+2cosA/(1+cosA)sinA
=2 (1+cosA)/(1+cosA)sinA
=2/sinA
=2×1/sinA
=2cosecA =RHS
Therefore LHS=RHS
sinA/1+cosA+1+cosA=2cosecA is proved.
Similar questions