Math, asked by spoorthy8, 1 year ago

sinA÷1+cosA+1+cosA÷sinA=2/sinA​

Answers

Answered by Sharad001
85

Question :-

Prove that

 \sf{ \frac{  \sin  a}{1 +  \cos  a}  +  \frac{1 +  \cos a}{ \sin a}  =  \frac{2}{ \sin a} or \: 2 \csc a} \\

Formula used :-

 \star \sf{  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy} \\  \\  \star \:   { \sin}^{2}  \theta +  { \cos}^{2} \theta = 1

Proof :-

Taking left hand side because we need to prove left hand side(LHS) is equal to right hand side (RHS)

  \rightarrow \: \sf{\frac{  \sin  a}{1 +  \cos  a}  +  \frac{1 +  \cos a}{ \sin a} \: } \\  \\  \rightarrow \sf{  \frac{ { \sin}^{2}a +  {( 1 +  \cos a)}^{2}  }{ \sin a(1 +  \cos a)} } \\  \\  \rightarrow \sf{ \frac{ { \sin}^{2} a + 1 +  { \cos}^{2} a + 2 \cos a}{ \sin a(1 +  \cos a)} } \\  \\  \rightarrow \sf{ \frac{1 + 1 + 2 \cos a}{ \sin a(1 +  \cos a)} } \:  \\  \\  \rightarrow \sf{  \frac{2 + 2 \cos a}{ \sin a(1 +  \cos a)} } \\  \\  \rightarrow \sf{\frac{2(1 +  \cos a)}{ \sin a(1 +  \cos a)} } \\  \:  \\  \rightarrow \sf{ \frac{2}{ \sin a}  \:  \: or \: 2   \csc a}

LHS = RHS

hence proved .

\_________________/

#answetwithquality

#BAL

Similar questions