Math, asked by Nimmy15, 8 months ago

(sinA/1-cosA -1-cosA/sinA)(cosA/1-sinA- 1-sinA/cosA)​

Answers

Answered by ritasharan632
4

Answer:

Correct Question :-

Prove that : sinA/(1 - cosA) + tanA/(1 + cosA) = (cos²A + 1)/sinA * cos A

Solution :-

\sf \dfrac{sinA}{1 - cosA} + \dfrac{tanA}{1 + cosA} = \dfrac{cos^{2} A + 1}{sinA \times cosA}

1−cosA

sinA

+

1+cosA

tanA

=

sinA×cosA

cos

2

A+1

Consider RHS

\sf = \dfrac{sinA}{1 - cosA} + \dfrac{tanA}{1 + cosA}=

1−cosA

sinA

+

1+cosA

tanA

Taking LCM

\sf = \dfrac{sinA(1 + cosA) + tanA(1 - cosA}{(1 - cosA)(1 + cosA)}=

(1−cosA)(1+cosA)

sinA(1+cosA)+tanA(1−cosA

\sf = \dfrac{sinA+ sinA.cosA + tanA - tan A.cosA}{ {1}^{2} - cos ^{2} A}=

1

2

−cos

2

A

sinA+sinA.cosA+tanA−tanA.cosA

[ Because (x - y)(x + y) = x² - y² ]

\sf = \dfrac{sinA+ sinA.cosA + tanA - \dfrac{sinA}{cosA} .cosA}{1 - cos ^{2} A}=

1−cos

2

A

sinA+sinA.cosA+tanA−

cosA

sinA

.cosA

[ Because tanA = sinA/cosA ]

\sf = \dfrac{sinA+ sinA.cosA + tanA - sinA}{sin^{2} A}=

sin

2

A

sinA+sinA.cosA+tanA−sinA

\sf = \dfrac{sinA.cosA + tanA}{sin^{2} A}=

sin

2

A

sinA.cosA+tanA

\sf = \dfrac{sinA.cosA + \dfrac{sinA}{cosA} }{sin^{2} A}=

sin

2

A

sinA.cosA+

cosA

sinA

Taking sinA common in numerator

\sf = \dfrac{sinA \bigg(cosA + \dfrac{1}{cosA} \bigg)}{sin^{2} A}=

sin

2

A

sinA(cosA+

cosA

1

)

\sf = \dfrac{ cosA + \dfrac{1}{cosA}}{sin A}=

sinA

cosA+

cosA

1

Taking LCM in numerator

\sf = \dfrac{ \dfrac{cos^{2} A +1 }{cosA}}{sin A}=

sinA

cosA

cos

2

A+1

\sf = \dfrac{cos^{2} A +1 }{sinA.cosA}=

sinA.cosA

cos

2

A+1

Hence proved

plzz like my 20 answer I promise I will also ❤️❤️

Similar questions