(sinA/1-cosA - 1-cosA/sinA) * (cosA/1-sinA - 1-sinA/cosA)=4
Answers
Answer:
Use basic method to solve this question.
In the expression, ( sinA/ 1-cosA - 1-cosA/sinA) and (cosA/ 1-sinA - 1-sinA/cosA), take LCM in each expression to solve the question.
In ( sinA/ 1-cosA - 1-cosA/sinA), take LCM as sinA. 1-cosA
Now, the expression becomes [sin²A - (1-cosA)²] / sinA. (1-cosA)
Now, [ sin²A - (1+ cos²A + 2cosA )] / sinA. (1-cosA)
= [ sin²A - 1-cos²A + 2cosA] / sinA. (1-cosA)
= [ sin²A - 1 - 1 + sin²A +2 cosA] / sinA. ( 1-cosA)
= [ 2 sin²A - 2 + 2 cosA] / sinA. ( 1-cosA)
= [ 2- 2cos²A - 2 + 2cosA] / sinA.(1-cosA)
= [ 2cos A ( 1 - cos A) / sinA. ( 1-cosA)
=2cos A/ sinA.............................................................equation 1
( You know than sin²A + cos²A = 1
Hence, sin²A = 1- cos²A )
Now, solve second expression ( cos A/ 1-sinA - 1-sinA/cosA )
The LCM is cos A . ( 1-sinA)
The expression becomes [cos²A - (1 -sinA)²] / cos A. ( 1 - sin A)
[ cos²A - 1 - sin²A + 2 sinA ] /cosA. ( 1-sinA)
= [ 1 -sin²A - 1 - sin²A + 2sinA] /cosA. ( 1-sinA)
= [ -2 sin²A + 2 sinA] / cosA. (1-sinA)
= 2sinA ( 1- sinA) / cosA. ( 1-sinA)
= 2sinA /cos A ..................................................................equation 2
Now equation 1 * equation 2 ( as given in the question)
2 cos A/ sinA * 2 sin A/cos A
= 4
Now, you can easily see that LHS = RHS
Hence, the problem is solved.