Math, asked by amankhanab111, 1 year ago

{sinA/1+cosA + 1+cosA/sinA}.{cosA/1+sinA+1+sinA/cosA}= 4secA.cosecA

Answers

Answered by perfectbrainly
5
request u to see the attachment:
Attachments:
Answered by ColinJacobus
4

Answer:  Proved.

Step-by-step explanation:  We are given to prove the following:

\left(\dfrac{\sin A}{1+\cos A}+\dfrac{1+\cos A}{\sin A}\right)\left(\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}\right)=4\sec A\csc A.

We will need the following trigonometric identities in the proof:

(i)~\cos^2A+\sin^2A=1,\\\\(ii)~\dfrac{1}{\cos A}=\sec A,\\\\(iii)~\dfrac{1}{\sin A}=\csc A.

We have

L.H.S.\\\\=\left(\dfrac{\sin A}{1+\cos A}+\dfrac{1+\cos A}{\sin A}\right)\left(\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}\right)\\\\\\=\left(\dfrac{\sin^2A+(1+\cos^2A)}{(1+\cos A)\sin A}\right)\left(\dfrac{\cos^2A+(1+\sin^2A)}{(1+\sin A)\cos A}\right)\\\\\\=\dfrac{(\sin^2A+1+2\cos A+\cos^2A)(\cos^2A+1+2\sin A+\sin^2A)}{(1+\cos A)(1+\sin A)\cos A\sin A}\\\\\\=\dfrac{(2+2\cos A)(2+2\sin A)}{(1+\cos A)(1+\sin A)\cos A\sin A}\\\\\\=\dfrac{4(1+\cos A)(1+\sin A)}{(1+\cos A)(1+\sin A)\cos A\sin A}\\\\\\=\dfrac{4}{\cos A\sin A}\\\\=4\sec A\csc A\\\\=R.H.S.

Thus, the given equality is proved.

Similar questions