Math, asked by jiya2563, 5 months ago

sinA/1-cosA=cosecA+cotA​

Answers

Answered by kaushik05
7

To prove :

 \star \:  \dfrac{  \sin \theta}{1 -   \cos \theta}  =  \cosec \theta \:  +  \cot \theta

Solution :

• LHS

  \implies \:  \dfrac{ \sin\theta}{1 -  \cos\theta}

Rationalise the denominator :

 \implies \:  \dfrac{ \sin\theta}{1 -  \cos\theta}  \times  \dfrac{1  +  \cos \: \theta }{1 +  \cos\theta}  \\  \\  \implies \:  \dfrac{ (\sin \theta)(1 +  \cos \theta)}{ {1}^{2}  -  { \cos}^{2}\theta }  \\  \\  \implies \:  \dfrac{ ( \sin\theta)(1 +  \cos \theta)}{ { \sin}^{2}  \theta}  \\  \\  \implies \:  \dfrac{  \cancel{\sin \theta}}{  \cancel{{ \sin}^{2 } \theta} }  +  \dfrac{ \cancel{ \sin \theta} \cos \theta} { \cancel{ {  \sin}^{2}  \theta} } \\  \\  \implies \:  \dfrac{1}{ \sin \theta}  +  \dfrac{ \cos\theta}{ \sin\theta}  \\  \\  \implies \:  \cosec\theta +  \cot \: \theta

LHS = RHS

PROVED.

Formula used :

sin² @ + cos²@ = 1

sin @ = 1/ cosec@

cot@ = cos@/ sin@

Similar questions