sinA/1-cosA=cosecA+cotA
Ansr fast it's urgent...
Answers
Answered by
1
Step-by-step explanation:
Answer and Explanation:
To prove : \frac{\sin A}{1+\cos A}=\csc A-\cot A
1+cosA
sinA
=cscA−cotA
Proof :
Taking LHS,
\frac{\sin A}{1+\cos A}
1+cosA
sinA
Rationalize,
=\frac{\sin A}{1+\cos A}\times \frac{1-\cos A}{1-\cos A}=
1+cosA
sinA
×
1−cosA
1−cosA
=\frac{\sin A(1-\cos A)}{(1+\cos A)(1-\cos A)}=
(1+cosA)(1−cosA)
sinA(1−cosA)
=\frac{\sin A(1-\cos A)}{1^2-\cos^2 A}=
1
2
−cos
2
A
sinA(1−cosA)
=\frac{\sin A(1-\cos A)}{\sin^2 A}=
sin
2
A
sinA(1−cosA)
=\frac{1-\cos A}{\sin A}=
sinA
1−cosA
=\frac{1}{\sin A}-\frac{\cos A}{\sin A}=
sinA
1
−
sinA
cosA
=\csc A-\tan A=cscA−tanA
= RHS
So, LHS=RHS hence proved.
Answered by
6
sin A
1 + cos A
sin A 1 LHS = cos A
1 + cos A 1 - cos A
sin A(1 - cos A)
1 - cos² A
1 cos A
sin A
1
cos A
sin A sin A
= cosecA - cotA RHS
Similar questions