Math, asked by XxDevilKartikxX, 21 hours ago

sinA/1+cosA + sinA/1-cosA= 2cosecA​

Answers

Answered by suvendu1274
1

Answer:

Hence,proved.

Mark me brainliest plz Hope it helps you

Attachments:
Answered by Aeryxz
34

\sf Question: To \ Prove \ \dfrac{sinA}{1 + cosA} + \dfrac{sinA}{1 - cosA} = 2 \ cosecA \:

Proof:

\sf LHS = \dfrac{sinA}{1 + cosA} + \dfrac{sinA}{1 - cosA}

  • Taking sinA as common outside we get,

\sf LHS = sinA \times \left(\dfrac{1}{1 + cosA} + \dfrac{1}{1 - cosA}\right)

\sf LHS = sinA \times \left( \ \dfrac{1 - cosA + 1 + cosA}{(1 + cosA)(1 - cosA)} \ \right)

  • Using (a - b)(a + b) = a² - b²

\sf LHS = sinA \times \left(\dfrac{2}{(1^2 - cos^2A)}\right)

  • Using 1 - cos²A = sin²A we get,

\sf LHS = sinA \times \left(\dfrac{2}{sin^2A}\right)

  • Cancelling sinA we get,

\sf LHS = \left(\dfrac{2}{sinA}\right) \:

\sf LHS = 2 \times \left(\dfrac{1}{sinA}\right) \:

  • But 1/sinA = cosecA, therefore,

\sf {LHS = 2 \times cosecA} \:

\sf {LHS = 2 \ cosecA}

\sf{LHS = RHS} \:

Hence Proved.

Similar questions