(sinA/1-cotA)+(cosA/1-tanA)=cosA+sinA
Answers
Answered by
0
Step-by-step explanation:
(sinA/1-cotA)+(cosA/1-tanA)
=(sin²A/sinA-cosA)+(cos²A/cosA-sinA)
=(sin²A/sinA-cosA)-(cos²A/sinA-cosA)
=(sin²A-cos²A)/(sinA-cosA)
=(sinA+cosA)(sinA-cosA)/(sinA-cosA)
=sinA+cosA
Similar questions