Math, asked by sahil2460516, 10 months ago

(sinA ÷ 1 - cotA) + (cosA ÷ 1 - tanA) = sinA + cosA



It is a proving question.​

Answers

Answered by navyakukreja11
2

LHS = \frac{sinA}{1-cotA} + \frac{cosA}{1-tanA} \\

\frac{sinA}{1-\frac{cosA}{sinA} } + \frac{cosA}{1-\frac{sinA}{cosA}}

\frac{sin^2A}{sinA-cosA}+ \frac{cos^2A}{cosA-sinA}

\frac{sin^2a}{sinA-cosA}-\frac{cos^2A}{sinA-cosA}  

\frac{sin^2A-cos^2A}{sinA-cosA}

Now, since

a^2-b^2=(a+b)(a-b)

\frac{(sinA+cosA)(sinA-cosA)}{sinA-cosA}

LHS = sinA + cosA = RHS

Hence proved :)

Similar questions