Math, asked by rsunaina916, 3 months ago

sinA/1-cotA+cosA/1-tanA=sinA+cotA​

Answers

Answered by aryan073
4

Given :

To prove that :

  \\ \bullet \bf  \frac{sinx}{1 - cotx}  +  \frac{cosx}{1 - tanx}  = sinx + cosx

To Find :

  \\ \bullet \bf \:  \frac{sinx}{1 - cotx}  +  \frac{cosx}{1 - tanx}  = sinx + cosx

Formulas :

 \\  \bullet \bf \: tanx =  \frac{sinx}{cosx}

  \\ \bullet \bf \: cotx =  \frac{1}{tanx}  =  \frac{cosx}{sinx}

 \\  \bullet \bf \: secx =  \frac{1}{cosx}

Solution :

  \\ \bullet \bf \:  \frac{cosx}{1 - tanx}  +  \frac{sinx}{1 - cotx}  = sinx + cosx

Taking L.H.S :

  \\ \implies \sf \:  \frac{cosx}{1 - tanx}  +  \frac{sinx}{1 - cotx}

 \\  \implies \sf \:  \frac{cosx}{1 -  \frac{sinx}{cosx} }  +  \frac{sinx}{1 -  \frac{cosx}{sinx} }

  \\  \implies \sf \:   \frac{cosx}{ \frac{cosx - sinx}{cosx} }  +  \frac{sinx}{ \frac{sinx - cosx}{sinx} }

 \\  \implies \sf \:  \frac{ {cos}^{2}x }{cosx - sinx}  -  \frac{ {sin}^{2}x }{ - sinx + cosx}

 \\  \implies \sf \:  \frac{ {cos}^{2}x -  {sin}^{2} x }{cosx - sinx}

 \\  \implies \sf \:  \frac{(cosx + sinx) {(cosx - sinx)}}{(cosx - sinx)} = cosx + sinx

RHS,

 \\  \implies \boxed{ \sf{ \frac{cosx}{1 - tanx}  +  \frac{sinx}{1 - cotx}  = sinx + cosx}}

Answered by sandy1816
0

 \frac{cosA}{1 - tanA}  +  \frac{sinA}{1 - cotA}  \\  \\  =  \frac{ {cos}^{2}A }{cosA - sinA}  +  \frac{ {sin}^{2}A }{sinA - cosA}  \\  \\  =  \frac{ {cos}^{2} A}{cosA - sinA}  -  \frac{ {sin}^{2}A }{cosA- sinA}  \\  \\  =  \frac{ {cos}^{2}A -  {sin}^{2}  A}{cosA - sinA}  \\  \\  = cosA + sinA

Similar questions