Math, asked by whoistrouble, 10 months ago

SinA=1/root3 Find cotA

Answers

Answered by ItzArchimedes
7

Given:

  • sinA =  \sf\dfrac{1}{\sqrt{3}}

To Find:

  • cotA = ?

Diagram

 \setlength{\unitlength} {1mm}\begin{picture} (5,5)\put(0,0){\line(1,0) {30}}\put(30,0){\line(0,1) {40}}\put(0,0){\line(3,4) {30}}\put(13,-4){1.41\ cm} \put(32,17){1\ cm}\put(8,23) {1.78cm}\put(3,1){$\theta$} \end{picture}

Solution:

sinA = \sf \dfrac{1}{\sqrt{3}}

That means

Opposite side of  \theta = 1

Hypotenuse of ∆ =  \sqrt{3}

Finding adjacent side of  \theta by Pythagoras theorem

(hypotenuse)² = (base)² + (Height)²

→ (√3)² = 1² + H²

→ H² = 3 - 1

H = 2

Now, cotA

cotA = \sf \dfrac{adjacent}{opposite}  = \dfrac{\sqrt{2}}{1}

cotA = 2. [answer]

Answered by amitkumar44481
4

AnsWer :

√2.

SolutioN :

Diagram.

\setlength{\unitlength}{1mm}}\begin{picture}(5,5)\put(0,0){\line(1,0){30}}\put(30,0){\line(0,1){40}}\put(0,0){\line(3,4){30}} \put(-3,0){$\tt{A}$}\put(31,0){$\tt{B}$}\put(30,40.5){$\tt{C}$} \put(33,15){$\tt{1}$} \put(2,15){$\tt{\sqrt{3}}$}\put(12,-5){$\tt{\sqrt{2}}$}\put(23,5.2){$\tt{90}$}\qbezier(23,0)(26,5.5)(29.5,4.3)\end{picture}

We have,

 \tt \dagger \:  \:  \:  \:  \: Sin\, \theta =  \dfrac{1}{ \sqrt{3} }

We know,

  • Sin²A + Cos²A = 1.

 \tt \leadsto  {  \Bigg(\dfrac{1}{ \sqrt{3} }\Bigg)}^{2} + {cos\, }^{2}  \theta =1 .

 \tt \leadsto  {  \Bigg(\dfrac{1}{ 3 }\Bigg)} + {cos\, }^{2}  \theta =1 .

 \tt \leadsto  {cos\, }^{2}  \theta =1  -  \dfrac{1}{3}

 \tt \leadsto  {cos\, }^{2}  \theta = \dfrac{3 - 1}{3}

 \tt \leadsto  {cos\, }^{2}  \theta = \dfrac{2}{3}

 \tt \leadsto  cos\,   \theta = \pm  \sqrt{ \dfrac{2}{3} }

Now,

  • P = 1.
  • B = √2.
  • H = √3.

 \tt \dagger \:  \:  \:  \:  \: Sin \,\theta = \dfrac{Perpendicular }{Hypotenuse }

 \tt \dagger \:  \:  \:  \:  \: Sin \,\theta = \dfrac{1 }{ \sqrt{3}  }

\rule{90}1

 \tt \dagger \:  \:  \:  \:  \: Cos \,\theta = \dfrac{ Base }{Hypotenuse }

 \tt \dagger \:  \:  \:  \:  \: Cos \,\theta = \dfrac{  \sqrt{2}  }{ \sqrt{3}  } =  \sqrt{ \dfrac{2}{3} }

\rule{90}1

 \tt \dagger \:  \:  \:  \:  \: Tan \,\theta = \dfrac{ Perpendicular }{Base }

 \tt \dagger \:  \:  \:  \:  \: Tan \,\theta = \dfrac{ 1 }{ \sqrt{2}  }

\rule{90}1

 \tt \dagger \:  \:  \:  \:  \: Cot \,\theta = \dfrac{ Base }{ Perpendicular}

 \tt \dagger \:  \:  \:  \:  \: Cot \,\theta = \dfrac{  \sqrt{2}  }{ 1}

Similar questions