Math, asked by lmonisa557, 11 months ago

SinA( 1+ tan A ) + cos A ( 1 + cot A ) = sec A + cosec A

Answers

Answered by SillySam
5

Sin A ( 1 + tan A) + cos A ( 1 + cot A) = Sec A + cosec A

Solving the LHS

Solving the brackets

→ Sin A + Sin A tan A + cos A + cos A cot A

Now , we know that

  • Tan A = Sin A/ Cos A
  • Cot A = Cos A / sin A

•°• Sin A + (Sin A tan A) + cos A + (cos A cot A)

→ Sin A + (Sin A . Sin A/ cos A) + cos A +( cos A. cos A/ sin A )

→ Sin A + (sin²A / cos A) + cos A + (cos² A / sin A )

Taking the fractions :

 \sf \dfrac{ {sin}^{2}A \: cosA  +  {sin}^{3} A +  {cos}^{2}A \: sin \: A+  {cos}^{3}A}{sin \: A \: cos \: A}

 \sf \dfrac{{sin}^{2} A(cos \: A \:  + sin \: A) +  {cos}^{2}A(sin \: A + cos \: A)}{cos \: A\ sin\ A}

 \sf \dfrac{( {sin}^{2}A +  {cos}^{2} A) + (sin \: A + cos \: A) }{cos \: A \: sin \: A}

 \sf \dfrac{sin \: A \:  + cos \: A}{cos \: A \: sin \: A}

Separating the terms :

 \sf \dfrac{sin \: A}{cos \: A \: sin \: A}  +  \dfrac{cos \: A}{cos \: A \: sin \: A}

  \sf \dfrac{1}{cos \: A}  +  \dfrac{1}{sin \: A}

 \implies  \boxed{\sf sec \: A + cosec \: A}

LHS = RHS

Hence proved

Similar questions