sinA(1+ tan A) + cos A (1 + cot A) = sec A + cosec A
Answers
Hi!!
L.H.S
=>
Sin A ( 1 + Tan A ) + Cos A ( 1 + Cot A )
=>
( Sin A + Sin² A / Cos A ) + ( Cos A + Cos² A / Sin A )
=>
( Sin A + Cos A ) + ( Sin³ A + Cos³ A )/(Sin A × Cos A )
=>
( Sin A + Cos A ) + ( Sin A + Cos A )³ - 3Sin A × Cos A ( Sin A + Cos A )/ ( Sin A × Cos A )
=>
{Sin A + Cos A } { Sin A × Cos A + 1 - Sin A × Cos A }
---------------------------------------------------
( Sin A × Cos A )
=>
( Sin A + Cos A )
------------------
( Sin A × Cos A )
=>
Sec A + Cosec A = R.H.S
Hence proved.
Note:-
( a³ + b³ ) = ( a + b )³ - 3ab ( a + b )
And
Sin² A + Cos² A = 1
Step-by-step explanation:
Taking LHS
Sin a (1+tana)+ cosa (1+cot a )
sin a [ 1 + sin a / cos a ] + cos a [ 1+ cos a/ sin a]
sina ( cos a + sin a )/ cos a + cos a ( sin a + cos a )/ sin a
Taking cos a + sin a common
___________________________
cos a + sina { sin a / cos a + cos a / sina }
cos a + sin a { (sin ^2a + cos ^2 a )/ cos a . sin a }
[ cos ^2 a + sin ^2 a = 1]
so
cos a + sin a ( 1/ cos a . sin a)
cos a + sin a /cos a . sin a
cos a / cosa . sina + sin a / cos a . sin a
1/ sina + 1/ cos a
cosec a + sec a .
So LHS = RHS .
HENCE PROVED.
Hope it may help you ♥♥