Math, asked by geniuscientist7561, 9 months ago

SinA(1+tanA)1cosA(1+cot)=secA+cosecA. Prove

Answers

Answered by Anonymous
5

Step-by-step explanation:

To Prove : sin A(1 + tan A) + cos A(1 + cot A) = sec A + cosec A

Proof :

L.H.S. = sin A(1 + tan A) + cos A(1 + cot A)

_____________________________

{\boxed{\tt{\bigstar \ \ Identity \ : \ tan A = {\dfrac{sin A}{cos A}}}}}

{\boxed{\tt{\bigstar \ \ Identity \ : \ cot A = {\dfrac{cos A}{sin A}}}}}

_____________________________

\implies{\sf{ sin A + \left( 1 + {\dfrac{sin A}{cos A}} \right) + cos A \left( 1 + {\dfrac{cos A}{sin A}} \right) }}

_____________________________

\implies{\sf{sin A (1) + sin A \left( {\dfrac{sin A}{cos A}} \right) + cos A (1) + cos A \left( {\dfrac{cos A}{sin A}} \right) }}

_____________________________

\implies{\sf{sin A + {\dfrac{sin^2 A}{cos A}} + cos A + {\dfrac{cos^2 A}{sin A}} }}

_____________________________

Rearranging the terms.

\implies{\sf{sin A + {\dfrac{cos^2 A}{sin A}} + cos A + {\dfrac{sin^2 A}{cos A}}}}

_____________________________

\implies{\sf{ {\dfrac{sin A(sin A) + cos^2 A}{sin A}} + {\dfrac{cos A(cos A) + sin^2 A}{cos A}} }}

_____________________________

\implies{\sf{ {\dfrac{sin^2 A + cos^2 A}{sin A}} + {\dfrac{cos^2 A + sin^2 A}{cos A}}}}

_____________________________

{\boxed{\tt{\bigstar \ \ Identity \ : \ sin^2 \theta + cos^2 \theta = 1}}}

_____________________________

\implies{\sf{ {\dfrac{1}{sin A}} + {\dfrac{1}{cos A}}}}

_____________________________

{\boxed{\tt{\bigstar \ \ Identity \ : \ cosec A = {\dfrac{1}{sin A}}}}}

{\boxed{\tt{\bigstar \ \ Identity \ : \ sec A = {\dfrac{1}{cos A}}}}}

_____________________________

\implies{\sf{ cosec A + sec A}}

_____________________________

= R.H.S.

Hence, verified !!

Similar questions