Math, asked by rajarampatil141, 3 months ago

sinA(1-tanA)-cos(1-cotA)= cosecA - secA​

Answers

Answered by richapariya121pe22ey
0

Step-by-step explanation:

sinA(1 - tanA) - cosA(1 - cotA) \\  = sinA(1 -  \frac{sinA}{cosA} ) - cosA(1 -  \frac{cosA}{sinA} ) \\  =  \frac{sinA(cosA - sinA)}{cosA}  -  \frac{cosA(sinA - cosA)}{sinA}  \\   = \frac{sinAcosA -  {sin}^{2}A }{cosA}  -  \frac{sinAcosA -  {cos}^{2} A}{sinA}  \\  =  \frac{ {sin}^{2}AcosA -  {sin}^{3}  A - sinA {cos}^{2} A  +  {cos}^{3}A }{sinAcosA}  \\ =   \frac{(1 -  {cos}^{2}A)(cosA) -  {sin}^{3} A - (sin A)(1 -  {sin}^{2} A) +  {cos}^{3} A}{sinAcosA}  \\  =  \frac{cosA -  {cos}^{3}A -  {sin}^{3}  A - sinA +  {sin}^{3}A +  {cos}^{3}  A}{sinAcosA}  \\  =  \frac{cosA - sinA}{sinAcosA}  \\  =  \frac{cosA}{sinAcosA} -  \frac{sinA}{sinAcosA}   \\  =  \frac{1}{sinA}  -  \frac{1}{cosA}  = cosecA - secA

Similar questions