sinA(1+tanA) + cosA(1+cotA) =
Answers
Answered by
2
Answer:
How do you prove that sinA(1+tanA)+cosA(1+cotA)=secA+cosecA?
To prove sin A(1+ tan A)+ cos A(1 + cot A) = sec A + cosec A.
LHS = sin A(1+ tan A)+ cos A(1 + cot A)
= sin A + sin^2 A/ cos A + cos A + cos^2 A/ sin A
= sin A + cos A + [sin^3 A + cos^3 A]/sin A cos A
=[ sin^2 A cos A + cos^2 A sin A + sin^3 A + cos^3 A]/sin A cos A
= [ sin^2 A cos A +cos^3 A + cos^2 A sin A + sin^3 A]/sin A cos A
= [cos A (sin^2 A + cos^2 A) + sin A (sin^2 A + cos^2 A)]/sin A cos A
= [cos A +sin A]/sin A cos A
= (1/sin A) + (1/cos A)
= cosec A + sec A = RHS.
Proved.
Answered by
1
Answer:
SecA +Cosec A
Step-by-step explanation:
Sin A + Sin^2A/Cos A + Cos A + Cos^2A/Sin a
= sin+ 1/Cos - cos + cos +1/sin-sin
= 1/Cos + 1/sin
= sec+ cosec
Similar questions