Math, asked by ishikashah2512, 1 year ago

sinA(1+tanA)+cosA(1+cotA)= secA+cosecA​

Answers

Answered by Arcel
5

To prove that:

sin A (1+ tan A)+ cos A (1 + cot A) =  sec A + cosec A.

Left Hand Side:

sin A (1+ tan A) + cos A(1 + cot A)

Simplifying,

= sin A + sin^{2} A/ cos A + cos A + cos^{2} A  /  (sin A)

= sin A + cos A + [sin^{3}A + cos^{3} A]/ (sin A) (cos A)

=[ sin^{2} A cos A + cos^{2} A sin A + sin^{3} A + cos^{3} A]/ (sin A) (cos A)

= [ sin^{2} A cos A + cos^{3} A + cos^{2} A sin A + sin^{3} A]/ (sin A) (cos A)

= cos A (sin^{2} A + cos^{2} A) + sin A (sin^{2} A + cos^{2}A)]/ (sin A) (cos A)

= cos A +sin A / (sin A) (cos A)

= (1/sin A) + (1/cos A)

= cosec A + sec A = RHS

Hence Proved

Answered by Anonymous
2

To prove sin A(1+ tan A)+ cos A(1 + cot A) = sec A + cosec A.

LHS = sin A(1+ tan A)+ cos A(1 + cot A)

= sin A + sin^2 A/ cos A + cos A + cos^2 A/ sin A

= sin A + cos A + [sin^3 A + cos^3 A]/sin A cos A

=[ sin^2 A cos A + cos^2 A sin A + sin^3 A + cos^3 A]/sin A cos A

= [ sin^2 A cos A +cos^3 A + cos^2 A sin A + sin^3 A]/sin A cos A

= [cos A (sin^2 A + cos^2 A) + sin A (sin^2 A + cos^2 A)]/sin A cos A

= [cos A +sin A]/sin A cos A

= (1/sin A) + (1/cos A)

= cosec A + sec A = RHS.

Proved.

Similar questions