sinA(1+tanA)+cosA(1+cotA)= secA+cosecA
Answers
To prove that:
sin A (1+ tan A)+ cos A (1 + cot A) = sec A + cosec A.
Left Hand Side:
sin A (1+ tan A) + cos A(1 + cot A)
Simplifying,
= sin A + si A/ cos A + cos A + co A / (sin A)
= sin A + cos A + [siA + co A]/ (sin A) (cos A)
=[ si A cos A + co A sin A + si A + co A]/ (sin A) (cos A)
= [ si A cos A + co A + co A sin A + si A]/ (sin A) (cos A)
= cos A (si A + co A) + sin A (si A + coA)]/ (sin A) (cos A)
= cos A +sin A / (sin A) (cos A)
= (1/sin A) + (1/cos A)
= cosec A + sec A = RHS
Hence Proved
To prove sin A(1+ tan A)+ cos A(1 + cot A) = sec A + cosec A.
LHS = sin A(1+ tan A)+ cos A(1 + cot A)
= sin A + sin^2 A/ cos A + cos A + cos^2 A/ sin A
= sin A + cos A + [sin^3 A + cos^3 A]/sin A cos A
=[ sin^2 A cos A + cos^2 A sin A + sin^3 A + cos^3 A]/sin A cos A
= [ sin^2 A cos A +cos^3 A + cos^2 A sin A + sin^3 A]/sin A cos A
= [cos A (sin^2 A + cos^2 A) + sin A (sin^2 A + cos^2 A)]/sin A cos A
= [cos A +sin A]/sin A cos A
= (1/sin A) + (1/cos A)
= cosec A + sec A = RHS.
Proved.