sinA(1+tanA)+cosA(1+cotA)=secA+cosecA
Answers
Answered by
1
Step-by-step explanation:
Prove that
SinA(1+tanA)+CosA(1+CotA) = secA + cosecA
Solutions
LHS
Sin(1 + tanA) + cosA(1+cotA)
SinA + Sin^2A/cosA + cosA + Cos^2A/sinA
On arranging
SinA + cos^2A/sinA + CosA + Sin^2A/cosA
(sin^2A + cos^2A)/sinA + (cos^2A + sin^2A)/cosA
1/sinA + 1/cosA
cosecA + SecA
Hence
LHS = RHS
Trigonometry identity used
Sin^2A + cos^2A = 1
1/sinA = cosecA
1/cosA = SecA
Addition , Multiplication is too used while
proving the expression .
Similar questions